SIMTEGRAL – Integrated multi-scale system simulation and sustainability assessment of primary and circular raw material supply chains for lithium-ion batteries

The raw materials used in lithium-ion batteries, not only determine the technical properties, but also significantly contribute to the manufacturing costs of batteries, and have environmental and social impacts. An economical, environmentally efficient, and socially acceptable supply chain of battery raw materials is of great strategic importance for the competitiveness of the German industries. The battery value chain can be shaped, and the impacts significantly influenced, by considering the – raw materials used, the mining region and technology, and efficient raw material recovery. Currently, however, there is insufficient detailed data available for the evaluation of the so-called raw material supply chain, i.e., the raw material supply chain from the mines to the product use and recycling. Furthermore, there is a also lack of reliable models to map the complex interactions to derive recommendations for action.

SIMTEGRAL aims at providing a robust computational methodology to support the design of environmentally consistent circular supply chains for traction batteries. Physically-based models of the most important processes for the production of primary and the recovery of secondary raw materials for lithium-ion batteries are to be developed and experimentally validated. These models will provide process data of higher quality and r